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2 update_R

update_R Update the state vector of the correlation parameters.

Description

Update the state vector of the correlation parameters.

Usage

update_R(
r,
data,
R,
log.f,
log.f.args,
log.priors,
log.priors.args,
sigma,
n = 100

)

Arguments

r a p-vector of correlations, the current state of the Markov chain.

data an n x d matrix such that the rows are iid outcomes for the study in question.

R a d x d correlation matrix in symbolic form. The off-diagonal elements should
be numbered from 2 to p+ 1.

log.f the log objective function, which must take the dataset, a correlation matrix, and
perhaps additional arguments.

log.f.args additional arguments for log.f.

log.priors a list of log prior densities for the correlation parameters, each of which should
accept a correlation and perhaps additional arguments.

log.priors.args

a list of additional arguments for the functions in log.priors.

sigma a vector, the standard deviations of the Gaussian proposals for the p correlation
parameters. This argument must have length 1 or length p. In the former case,
all of the random-walk proposals have the same variance. In the latter case, the
proposals have distinct variances.

n a positive integer, the number of grid points to employ in root finding. The
default value is 100, but in some cases a larger value may be required to avoid
missing roots of the determinant function.
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Details

This function takes the current state of the chain and returns the next state. The correlation pa-
rameters are updated one at a time by way of a Metropolis-Hastings Gaussian random walk for
each parameter. When the set of valid values for the proposal comprises a disconnected subset, i.e.,
two or more disjoint subintervals, of (−1, 1), the Apes of Wrath algorithm is used to update the
parameter in question.

Value

a p-vector, the new state of the chain.

Examples

# The following function computes HPD intervals.

hpd = function(x, alpha = 0.05)
{

n = length(x)
m = round(n * alpha)
x = sort(x)
y = x[(n - m + 1):n] - x[1:m]
z = min(y)
k = which(y == z)[1]
c(x[k], x[n - m + k])

}

# The following function computes the log likelihood.

logL = function(data, R, args)
{

n = nrow(data)
Rinv = solve(R)
detR = -0.5 * n * determinant(R, log = TRUE)$modulus
qforms = -0.5 * sum(diag(data %*% Rinv %*% t(data)))
f = detR + qforms
if (f > 0)

return(-1e6)
f

}

# Use a Uniform(-1, 1) prior for each correlation.

logP = function(r, args) dunif(r, -1, 1, log = TRUE)

# Build the list of priors and their arguments.

log.priors = list(logP, logP, logP, logP, logP)
log.priors.args = list(0, 0, 0, 0, 0)

# Simulate a dataset to work with. The dataset will have 32 observations,
# each of length 4. The outcomes will be generated from a Gaussian copula
# model having t-distributed marginal distributions. Then we Gaussianize
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# the ranks for analysis.

n = 16
R = diag(1, 4, 4)
R[1, 2] = R[2, 1] = 2
R[3, 4] = R[4, 3] = 3
R[1, 3] = R[3, 1] = R[2, 4] = R[4, 2] = 4
R[1, 4] = R[4, 1] = 5
R[2, 3] = R[3, 2] = 6
r = c(-0.2, -0.2, -0.4, -0.7, 0.9)
block = R
for (j in 1:5)

block[block == j + 1] = r[j]
blist = vector("list", n)
for (j in 1:n)

blist[[j]] = block
C = t(chol(as.matrix(Matrix::bdiag(blist))))
set.seed(42)
z = as.vector(C %*% rnorm(n * 4))
u = pnorm(z)
y = qt(u, df = 3)
data = matrix(y, n, 4, byrow = TRUE)
data = matrix(qnorm(rank(data) / (n * 4 + 1)), n, 4)

# Simulate a sample path of length 1,000.

m = 1000
r.chain = matrix(0, m, 5)
r.chain[1, ] = 0
sigma = c(1, 1, 0.25, 2, 5) # proposal standard deviations
start = proc.time()
for (i in 2:m)

r.chain[i, ] = update_R(r.chain[i - 1, ], data, R,
log.f = logL,
log.priors = log.priors,
log.priors.args = log.priors.args,
sigma = sigma,
n = 400)

stop = proc.time() - start
stop
stop[3] / m # 0.001 seconds per iteration on a 3.6 GHz 10-Core Intel Core i9

# Now show trace plots along with the truth and the 95% HPD interval.

dev.new()
plot(r.chain[, 1], type = "l")
abline(h = r[1], col = "orange", lwd = 3)
abline(h = hpd(r.chain[, 1]), col = "blue", lwd = 3)

dev.new()
plot(r.chain[, 2], type = "l")
abline(h = r[2], col = "orange", lwd = 3)
abline(h = hpd(r.chain[, 2]), col = "blue", lwd = 3)
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dev.new()
plot(r.chain[, 3], type = "l")
abline(h = r[3], col = "orange", lwd = 3)
abline(h = hpd(r.chain[, 3]), col = "blue", lwd = 3)

dev.new()
plot(r.chain[, 4], type = "l")
abline(h = r[4], col = "orange", lwd = 3)
abline(h = hpd(r.chain[, 4]), col = "blue", lwd = 3)

dev.new()
plot(r.chain[, 5], type = "l")
abline(h = r[5], col = "orange", lwd = 3)
abline(h = hpd(r.chain[, 5]), col = "blue", lwd = 3)
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